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Supporting Information Text

A. Proof of Lemma 2. We first give the decomposition of the excess risk.

Lemma S.1. The excess risk of the minimum norm estimator satisfies

R(θ̂) = Ex
(
x>
(
θ∗ − θ̂

))2 ≤ 2θ∗>Bθ∗ + 2ε>Cε,

and

Ex,εR(θ̂) ≥ θ∗>Bθ∗ + σ2 tr(C),

where

B =
(
I −X>

(
XX>

)−1
X
)

Σ
(
I −X>

(
XX>

)−1
X
)
,

C =
(
XX>

)−1
XΣX>

(
XX>

)−1
.

Proof. Since ε = y − x>θ∗ has mean zero conditionally on x,

R(θ̂) = Ex,y
(
y − x>θ̂

)2 − E
(
y − x>θ∗

)2
= Ex,y

(
y − x>θ∗ + x>

(
θ∗ − θ̂

))2 − E
(
y − x>θ∗

)2
= Ex

(
x>
(
θ∗ − θ̂

))2
.

Using Eq. [1], the definition of Σ, and the fact that y = Xθ∗ + ε,

R(θ̂) = Ex
(
x>
(
I −X>

(
XX>

)−1
X
)
θ∗ − x>X>

(
XX>

)−1
ε
)2

≤ 2Ex
(
x>
(
I −X>

(
XX>

)−1
X
)
θ∗
)2

+ 2Ex
(
x>X>

(
XX>

)−1
ε
)2

= 2θ∗>
(
I −X>

(
XX>

)−1
X
)

Σ
(
I −X>

(
XX>

)−1
X
)
θ∗ + 2ε>

(
XX>

)−1
XΣX>

(
XX>

)−1
ε

= 2θ∗>Bθ∗ + 2ε>Cε.

Also, since ε has zero mean conditionally on X, and is independent of x, we have

Ex,εR(θ̂) = Ex,ε
[(
x>
(
I −X>

(
XX>

)−1
X
)
θ∗
)2

+
(
x>X>

(
XX>

)−1
ε
)2
]

= θ∗
>
(
I −X>

(
XX>

)−1
X
)

Σ
(
I −X>

(
XX>

)−1
X
)
θ∗ + tr

((
XX>

)−1
XΣX>

(
XX>

)−1 E
[
εε>
∣∣X])

≥ θ∗>Bθ∗ + σ2 tr (C) .

The following lemma shows that we can obtain a high-probability upper bound on the term ε>Cε in terms of the trace of
C. It is Lemma 36 in (1).

Lemma S.2. Consider random variables ε1, . . . , εn, conditionally independent given X and conditionally σ2 sub-Gaussian,
that is, for all λ ∈ R,

E[exp(λεi)|X] ≤ exp(σ2λ2/2).

Suppose that, given X, M ∈ Rn×n is a.s. positive semidefinite. Then a.s. on X, with conditional probability at least 1− e−t,

ε>Mε ≤ σ2 tr(M) + 2σ2‖M‖t+ 2σ2
√
‖M‖2t2 + tr (M2) t.

Since ‖C‖ ≤ tr(C) and tr(C2) ≤ tr(C)2, with probability at least 1− e−t,

ε>Cε ≤ σ2 tr(C)(2t+ 1) + 2σ2
√

tr(C)2(t2 + t) ≤ (4t+ 2)σ2 tr(C).

Combining this with Lemma S.1 implies Lemma 2.
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B. An Algebraic Property. .

Lemma S.3. Suppose k < n, A ∈ Rn×n is an invertible matrix, and Z ∈ Rn×k is such that ZZ> +A is invertible. Then

Z>(ZZ> +A)−2Z = (I + Z>A−1Z)−1Z>A−2Z(I + Z>A−1Z)−1.

Proof. We use the Sherman–Morrison–Woodbury formula to write

(ZZ> +A)−1 = A−1 −A−1Z(I + Z>A−1Z)−1Z>A−1. [S1]

Denote M1 := Z>A−1Z and M2 := Z>A−2Z. Applying Eq. [S1], we get

Z>(ZZ> +A)−2Z = Z>
(
A−1 −A−1Z(I + Z>A−1Z)−1Z>A−1

)2
Z

= Z>
(
A−1 −A−1Z(I +M1)−1Z>A−1

)2
Z

= Z>
(
A−2 −A−2Z(I +M1)−1Z>A−1 −A−1Z(I +M1)−1Z>A−2

+A−1Z(I +M1)−1Z>A−2Z(I +M1)−1Z>A−1
)
Z

= M2 −M2(I +M1)−1M1 −M1(I +M1)−1M2 +M1(I +M1)−1M2(I +M1)−1M1

= M2 −M2(I +M1)−1M1 −M1(I +M1)−1M2(I − (I +M1)−1M1)
= M2(I +M1)−1 −M1(I +M1)−1M2(I +M1)−1

= (I +M1)−1M2(I +M1)−1,

where we used the identity I−(I+M1)−1M1 = (I+M1)−1 twice in the second last equality and the identity I−M1(I+M1)−1 =
(I +M1)−1 in the last equality.

C. Proof of concentration inequalities. We use some standard results about sub-Gaussian and subexponential random variables.
First of all, we need the following direct consequence of Propositions 2.5.2 and 2.7.1 and Lemma 2.7.6 from (2):

Lemma S.4. There is a universal constant c such that for any random variable ξ that is centered, σ2 sub-Gaussian, and unit
variance, ξ2 − 1 is a centered cσ2-subexponential random variable, that is,

E exp(λ(ξ2 − 1)) ≤ exp(c2σ4λ2) for all such λ that |λ| ≤ 1
cσ2 .

Second, we are going to use the following form of Bernstein’s inequality, which is Theorem 2.8.2 in (2):

Lemma S.5. There is a universal constant c such that, for any independent, mean zero, σ-subexponential random variables
ξ1, . . . , ξN , any a = (a1, . . . , aN ) ∈ Rn, and any t ≥ 0,

P

(∣∣∣∣∣
N∑
i=1

aiξi

∣∣∣∣∣ > t

)
≤ 2 exp

[
−cmin

(
t2

σ2
∑N

i=1 a
2
i

,
t

σmax1≤i≤n ai

)]
.

Corollary S.6. There is a universal constant c such that for any non-increasing sequence {λi}∞i=1 of non-negative numbers
such that

∑∞
i=1 λi < ∞, and any independent, centered, σ-subexponential random variables {ξi}∞i=1, and any x > 0, with

probability at least 1− 2e−x ∣∣∣∣∣∑
i

λiξi

∣∣∣∣∣ ≤ cσmax

xλ1,

√
x
∑
i

λ2
i

 .

Corollary S.7. There is a universal constant c such that for any centered random vector z ∈ Rn with independent σ2

sub-Gaussian coordinates with unit variances, any random subspace L of Rn of codimension k that is independent of z, and
any t > 0, with probability at least 1− 3e−t,

‖z‖2 ≤n+ cσ2(t+
√
nt),

‖ΠL z‖2 ≥n− cσ2(k + t+
√
nt),

where ΠL is the orthogonal projection on L .
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Proof. First of all, since ‖z‖2 =
∑n

i=1 z
2
i — a sum of n σ2-subexponential random variables, by Corollary S.6, for some absolute

constant c and for any t > 0, with probability at least 1− 2e−t,∣∣‖z‖2 − n∣∣ ≤ cσ2 max(t,
√
nt).

Second, we can write
‖ΠL z‖2 = ‖z‖2 − ‖ΠL⊥z‖

2.

Denote M = Π>L⊥ΠL⊥ . Since ‖M‖ = 1 and tr (M) = tr(M2) = k, by Lemma S.2, with probability at least 1− e−t,

‖ΠL⊥z‖
2 =z>Mz

≤σ2k + 2σ2t+ 2σ2
√
t2 + kt

≤σ2(2k + 4t).

Thus, with probability at least 1− 3e−t

‖z‖2 ≤n+ cσ2 max(t,
√
nt),

‖ΠL z‖2 ≥‖z‖ − σ2(2k + 4t)

≥n− σ2(2k + 4t+ cmax(t,
√
nt)).

Lemma S.8 (ε-net argument). Suppose A ∈ Rn×n is a symmetric matrix, and Nε is an ε-net on the unit sphere Sn−1 in the
Euclidean norm, where ε < 1

2 . Then
‖A‖ ≤ (1− ε)−2 max

x∈Nε
|x>Ax|.

Proof. Denote the eigenvalues of A as λ1, . . . , λn and assume |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. Denote the first eigenvector of A as
v ∈ Sn−1, and take ∆v ∈ Rn such that v + ∆v ∈ Nε and ‖∆v‖ ≤ ε. Denote the coordinates of ∆v in the eigenbasis of A as
∆v1, . . . ,∆vn. Now we can write

∣∣(v + ∆v)>A(v + ∆v)
∣∣ =

∣∣∣∣∣λ1 + 2λ1∆v1 +
n∑
i=1

λi∆v2
i

∣∣∣∣∣
= |λ1| ·

∣∣∣∣∣1 + 2∆v1 + ∆v2
1 +

n∑
i=2

λi
λ1

∆v2
i

∣∣∣∣∣
≥ |λ1| ·

∣∣∣∣∣1 + 2∆v1 + ∆v2
1 −

n∑
i=2

∆v2
i

∣∣∣∣∣
= |λ1| ·

∣∣1 + 2∆v1 + ∆v2
1 − ‖∆v‖2 + ∆v2

1
∣∣

= |λ1| ·
∣∣1 + 2

(
∆v1 + ∆v2

1
)
− ‖∆v‖2

∣∣
≥ |λ1| ·

∣∣1 + 2
(
−‖∆v‖+ (−‖∆v‖)2)− ‖∆v‖2∣∣

= |λ1| ·
∣∣1− 2‖∆v‖+ ‖∆v‖2

∣∣
≥ |λ1| · |1− 2ε+ ε2|

= ‖A‖(1− ε)2,

where the first inequality holds because the λis are decreasing in magnitude, and the last two inequalities hold since the
functions x+ x2 and 2x+ x2 are both increasing on (− 1

2 ,∞) and ∆v1 ≥ −‖∆v‖ ≥ −ε ≥ − 1
2 .

We restate Lemma 4.

Lemma S.9. There is a universal constant c such that with probability at least 1− 2e−n/c,

1
c

∑
i

λi − cλ1n ≤ µn(A) ≤ µ1(A) ≤ c

(∑
i

λi + λ1n

)
.
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Proof. For a fixed vector v ∈ Rn, Proposition 2.6.1 from (2) implies that for some constant c1 and any i the random variable
v>zi is c1‖v‖2σ2

x sub-Gaussian. Thus, for any fixed unit vector v, as v>Av =
∑

i
λi(v>zi)2, Lemma S.4 and Corollary S.6

imply that for some constant c2 with probability at least 1− 2e−t,∣∣∣v>Av −∑λi

∣∣∣ ≤ c2σ2
x max

(
λ1t,

√
t
∑

λ2
i

)
.

Let N be a 1
4 -net on the sphere Sn−1 with respect to the Euclidean distance such that |N | ≤ 9n. Applying the union bound

over the elements of N , we see that with probability 1− 2e−t, every v ∈ N satisfies

∣∣∣v>Av −∑λi

∣∣∣ ≤ c2σ2
x max

λ1(t+ n ln 9),
√

(t+ n ln 9)
∑
i

λ2
i

 .

Since N is a 1
4 -net, by Lemma S.8, we need to multiply the quantity above by (1− 1/4)−2 to get the bound on the norm of the

A− In
∑

i
λi. Denote

♦ =

λ1(t+ n ln 9) +
√

(t+ n ln 9)
∑
i

λ2
i

 .

Thus, with probability at least 1− 2e−t, ∥∥∥∥∥A− In∑
i

λi

∥∥∥∥∥ ≤ c3σ2
x♦.

When t < n/c4 we can write t+ n ln 9 ≤ c5n, and we have

♦ ≤ c5

λ1n+
√
n
∑
i

λ2
i


≤ c5λ1n+

√
(c25λ1n)

∑
i

λi

≤ c6σ2
xλ1n+ 1

2c3σ2
x

∑
i

λi,

by the AMGM inequality. (Recall that c1, c2, . . . denote universal constants with value at least 1, and σx ≥ 1/c7 is the
sub-Gaussian constant of a random variable with unit variance.)

D. Proof of Lemma 8. Fix i ≥ 1 with λi > 0 and 0 ≤ k ≤ n/c. By Lemma 5, with probability at least 1− 2e−n/c1 ,

µk+1(A−i) ≤ c1

(∑
j>k

λj + λk+1n

)
,

and hence

z>i A
−1
−i zi ≥

‖ΠLizi‖
2

c1

(∑
j>k

λj + λk+1n
) .

By Corollary 1, with probability at least 1− 3e−t,

‖ΠLizi‖
2 ≥ n− aσ2

x(k + t+
√
tn) ≥ n/c2,

provided that t < n/c0 and c > c0 for some sufficiently large c0. Thus, with probability at least 1− 5e−n/c3 ,

z>i A
−1
−i zi ≥

n

c3

(∑
j>k

λj + λk+1n
) ,

hence

1 + λiz
>
i A
−1
−i zi ≤

c3

(∑
j>k

λj + λk+1n
)

λin
+ 1

λiz
>
i A
−1
−i zi.
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Dividing λ2
i z
>
i A
−2
−i zi by the square of both sides, we have

λ2
i z
>
i A
−2
−i zi

(1 + λiz>i A
−1
−i zi)2

≥

c3

(∑
j>k

λj + λk+1n
)

λin
+ 1

−2

z>i A
−2
−i zi

(z>i A
−1
−i zi)2

.

Also, from the Cauchy-Schwarz inequality and Corollary 1 again, we have that on the same event,

z>i A
−2
−i zi

(z>i A
−1
−i zi)2

≥
z>i A

−2
−i zi∥∥A−1

−i zi
∥∥2 ‖zi‖2

= 1
‖zi‖2

≥ 1
n+ aσ2

x(t+
√
nt)
≥ 1
c4n

.

Choosing c suitably large gives the lemma.

E. Proof of Lemma 9. We know that, for all i ≤ n, P(ηi > ti) ≥ 1− δ. Consider the following event:

E =

{
n∑
i=1

ηi <
1
2

n∑
i=1

ti

}
,

and denote its probability as cδ for some c ∈ (0, δ−1). On the one hand, by the definition of the event, we have

1
P(E)E

[
1E

n∑
i=1

ηi

]
≤ 1

2

n∑
i=1

ti.

On the other hand, note that for any i,

E[ηi1E ] ≥E[ti1{ηi≥ti}∩E ]
= tiP({ηi ≥ ti} ∩ E)
≥ ti(P{ηi ≥ ti}+ P(E)− 1)
≥ ti(c− 1)δ.

So

E

[
1E

n∑
i=1

ηi

]
≥ (c− 1)δ

n∑
i=1

ti,

1
P(E)E

[
1E

n∑
i=1

ηi

]
≥ (1− c−1)

n∑
i=1

ti.

Thus, we obtain

1
2

n∑
i=1

ti ≥ (1− c−1)
n∑
i=1

ti,

c ≤ 2,

P

(
n∑
i=1

ηi <
1
2

n∑
i=1

ti

)
= cδ ≤ 2δ.

F. Proof of Lemma 11. We can write the function of l being minimized as

l

bn
+

bn
∑

i>l
λ2
i

(λk∗+1rk∗(Σ))2 =
l∑
i=1

1
bn

+
∑
i>l

bnλ2
i

(λk∗+1rk∗(Σ))2

≥
k∗∑
i=1

min
{

1
bn
,

bnλ2
i

(λk∗+1rk∗(Σ))2

}
+
∑
i>k∗

bnλ2
i

(λk∗+1rk∗(Σ))2

=
l∗∑
i=1

1
bn

+
∑
i>l∗

bnλ2
i

(λk∗+1rk∗(Σ))2 ,
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where l∗ is the largest value of i ≤ k∗ for which

1
bn
≤ bnλ2

i

(λk∗+1rk∗(Σ))2 ,

since the λ2
i are non-increasing. This condition holds iff

λi ≥
λk∗+1rk∗(Σ)

bn
.

The definition of k∗ implies rk∗−1(Σ) < bn. So we can write

rk∗(Σ) =
∑

i>k∗ λi

λk∗+1

=
∑

i>k∗−1 λi − λk∗
λk∗+1

= λk∗

λk∗+1
(rk∗−1(Σ)− 1)

<
λk∗

λk∗+1
(bn− 1),

and so the minimizing l is k∗. Also, ∑
i>k∗ λ

2
i

(λk∗+1rk∗(Σ))2 =
∑

i>k∗ λ
2
i(∑

i>k∗ λi
)2 = 1

Rk∗(Σ) .

G. Eigenvalue monotonicity. Recall (half of) the Courant-Fischer-Weyl theorem.

Lemma S.10. For any symmetric n× n matrix A, and any i ∈ [n], µi(A) is the minimum, over all subspaces U of Rn of
dimension n− i, of the maximum, over all unit-length u ∈ U , of u>Au.

Lemma S.11 (Monotonicity of eigenvalues). If symmetric matrices A and B satisfy A � B, then, for any i ∈ [n], we have
µi(A) ≤ µi(B).

Proof. Let U be the subspace of Rn of dimension n− i that minimizes the maximum over all unit-length u ∈ U , of u>Au, and
let V be the analogous subspace for B. We have

µi(A) = max
u∈U :||u||=1

u>Au (by Lemma S.10)

≤ max
v∈V :||v||=1

v>Av (since U is the minimizer)

≤ max
v∈V :||v||=1

v>Bv (since A � B)

= µi(B),

by Lemma S.10, completing the proof.

H. Rank facts. The quantity r0(Σ) is an important complexity parameter for covariance estimation problems, where it has
been called the ‘effective rank’ (3, 4). Earlier, r0(Σ2) was called the ‘stable rank’ (5) and the ‘numerical rank’ (6), although
that term has a different meaning in computational linear algebra (7, p261).

We restate Lemma 1.

Lemma S.12. rk(Σ) ≥ 1, r2
k(Σ) = rk(Σ2)Rk(Σ), and rk(Σ2) ≤ rk(Σ) ≤ Rk(Σ) ≤ r2

k(Σ).

Proof. The first inequality and the equality are immediate from the definitions. Together they imply Rk(Σ) ≤ r2
k(Σ). For the

second inequality,

rk(Σ2) =
∑

i>k
λ2
i

λ2
k+1

≤
λk+1

∑
i>k

λi

λ2
k+1

= rk(Σ).

Substituting this in the equality implies rk(Σ) ≤ Rk(Σ).

Lemma S.13. Writing rk and Rk for rk(Σ) and Rk(Σ),

1
Rk+1

=
1
Rk
− 1

r2
k

1−
(

2− 1
rk

)
1
rk

.

Thus, the function φ(k) = k/(b2n) + n/Rk satisfies the monotonicity property φ(k + 1) > φ(k) whenever rk > bn ≥ 1.
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Proof. Writing

q =
∑
i>k+1

λ2
i , s =

∑
i>k+1

λi,

so that Rk+1 = s2/q, we have

1
Rk
− 1
Rk+1

=
λ2
k+1 + q

(λk+1 + s)2 −
q

s2

=
(
λ2
k+1 + q

)
s2 − q (λk+1 + s)2

s2 (λk+1 + s)2

= 1
r2
k

− qλk+1 (λk+1 + 2s)
s2 (λk+1 + s)2

= 1
r2
k

− 2 (λk+1 + s)− λk+1

Rk+1rk (λk+1 + s)

= 1
r2
k

− 2− 1/rk
Rk+1rk

.

Hence

1
Rk+1

= 1/Rk − 1/r2
k

1−
(

2− 1
rk

)
1
rk

.

Since rk > 1, 0 < 1− (2− 1/rk) /rk < 1, so
n

Rk+1
>

n

Rk
− n

r2
k

,

and if rk > bn,

φ(k + 1)− φ(k) = k + 1
b2n

+ n

Rk+1
−
(
k

b2n
+ n

Rk

)
>

1
b2n
− n

r2
k

> 0.

I. Conditions on eigenvalues. In this section, we prove the following expanded version of Theorem 2.

Theorem S.14. Define λk,n := µk(Σn) for all k, n.

1. If λk,n = k−α ln−β((k + 1)e/2), then Σn is benign iff α = 1 and β > 1.

2. If λk,n = k−(1+αn), then Σn is benign iff ω(1/n) = αn = o(1). Furthermore,

R(θ̂) = Θ
(

min
{ 1
αnn

+ αn, 1
})

.

3. If

λk,n =
{
k−α if k ≤ pn,
0 otherwise,

then Σn is benign iff either 0 < α < 1, pn = ω(n) and pn = o
(
n1/(1−α)) or α = 1, pn = eω(

√
n) and pn = eo(n).

4. If

λk,n =
{
γk + εn if k ≤ pn,
0 otherwise,

and γk = Θ(exp(−k/τ)), then Σn with ||Σn|| = 1 is benign iff pn = ω(n) and ne−o(n) = εnpn = o(n). Furthermore, for
pn = Ω(n) and εnpn = ne−o(n),

R(θ̂) = O

(
εnpn + 1

n
+ ln(n/(εnpn))

n
+ max

{
1
n
,
n

pn

})
.
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5. If

λk,n =


1 if k ≤ sn,
εn if sn < k ≤ pn,
0 otherwise,

with εn > 0, then Σn is benign iff sn = o(n), pn = ω(n) and εnpn = o(n).

6. If

λk,n =


1 if k = 1,

εn
1 + θ2 − 2θ cos(kπ/(pn + 1))
1 + θ2 − 2θ cos(π/(pn + 1)) if 1 < k ≤ pn,

0 otherwise,

with θ < 1 and εn > 0, then Σn is benign iff pn = ω(n) and εnpn = o(n).

Theorem S.14(5) shows that the isotropic case is not benign (with sn = pn) and that the equicorrelation case is benign
(with sn = 1), provided that the correlation coefficient is sufficiently small. Theorem S.14(6) shows that the covariance matrix
for a length pn sample path from an MA(1) time series model (see, for example, (8, 9)) is not benign (with εn = 1), and that a
spiked MA(1) model is benign, provided the MA(1) variance, εn, is sufficiently small.

We build up the proof in stages. First, we characterize those sequences of effective ranks that can arise.

Theorem S.15. Consider some positive summable sequence {λi}∞i=1, and for any non-negative integer i denote

ri := λ−1
i+1

∑
j>i

λj .

Then ri > 1 and
∑

i
r−1
i =∞. Moreover, for any positive sequence {ui} such that

∑∞
i=0 u

−1
i =∞ and for every i ui > 1, there

exists a positive sequence {λi} (unique up to constant multiplier) such that ri ≡ ui. The sequence is (a constant rescaling of)

λk = u−1
k−1

k−2∏
i=0

(1− u−1
i ).

Proof. ∑
i≥k+1

λi =
∑
i≥k

λi − λk = (1− r−1
k−1)

∑
i≥k

λi.

Thus, ∑
i≥k+1

λi =
k−1∏
i=0

(
1− r−1

i

)
·
∑
i

λi,

which goes to zero if and only if
∑

i
r−1
i =∞. On the other hand, we may rewrite the first equality in the proof as

λk+1rk = λkrk−1(1− r−1
k−1),

and hence

λkrk−1 =
k−2∏
i=0

(
1− r−1

i

)
λ1r0.

So for any sequence {ui} we can uniquely (up to a constant multiplier) recover the sequence {λi} such that ri = ui — the only
candidate is

λk = u−1
k−1

k−2∏
i=0

(1− u−1
i ).

However, for such {λi} one can compute
k∑
i=1

λi = 1−
k−1∏
i=0

(1− u−1
i ),

so the resulting sequence {λi} sums to 1, and

rk = λ−1
k+1

∑
i>k

λi = λ−1
k+1

k−1∏
i=0

(1− u−1
i ) = uk.
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Theorem S.16. Suppose b is some constant, and k∗(n) = min{k : rk ≥ bn}. Suppose also that the sequence {rn} is increasing.
Then, as n goes to infinity, k∗(n)/n goes to zero if and only if rn/n goes to infinity.

Proof. We prove the “if” part separately from the “only if” part.

1. If k∗(n)/n→ 0 then rn/n→∞.
Fix some C > 1. Since k∗(n)/n→ 0, there exists some NC such that for any n ≥ NC , k∗(n) < n/C. Thus, for all n > NC ,

k∗(bCnc) ≤ n,
rn ≥ rk∗(bCnc) ≥ bbCnc.

Since the constant C is arbitrary, rn/n goes to infinity.

2. If rn/n→∞ then k∗(n)/n→ 0 .
Fix some constant C > 1. Since rn/n → ∞ there exists some NC such that for any n ≥ NC , rn > Cn. Thus, for any
n > CNC/b

rdnb/Ce ≥ bn,
k∗(n) ≤ dnb/Ce.

Since the constant C is arbitrary, k∗(n)/n goes to zero.

Theorem S.17. Suppose the sequence {ri} is increasing and rn/n→∞ as n→∞. Then a sufficient condition for n
Rk∗(n)

→ 0
is

r−2
k = o(r−1

k − r
−1
k+1) as k →∞.

For example, this condition holds for rn = n logn.

Proof. We need to show that
n

Rk∗(n)
=

n
∑

i>k∗(n) λ
2
i(∑

i>k∗(n) λi

)2 =
n
∑

i>k∗(n) λ
2
i

λ2
k∗(n)+1r

2
k∗(n)

→ 0.

Since rk∗(n) ≥ bn and limn→∞ k
∗(n) =∞, it is enough to prove that

∑
i>k

λ2
i

λ2
k+1rk

→ 0 as k goes to infinity. Since

λk+2rk+1 = λk+1rk(1− r−1
k ),

we can write that

λk+1+lrk+l = λk+1rk

k+l−1∏
i=k

(1− r−1
i )

≤ λk+1rk exp

(
−
k+l−1∑
i=k

r−1
i

)
which yields

λk+1+l

λk+1rk
≤ r−1

k+l exp

(
−
k+l−1∑
i=k

r−1
i

)
.

Thus, we obtain ∑
i>k

λ2
i

λ2
k+1rk

≤ rk
∑
i≥k

r−2
i exp

(
−2

i−1∑
j=k

r−1
j

)
,

and it is sufficient to prove that the latter quantity goes to zero. We write

rk
∑
i≥k

r−2
i exp

(
−2

i−1∑
j=k

r−1
j

)
=

∑
i≥k r

−2
i exp

(
−2
∑i−1

j=k r
−1
j

)
r−1
k

=

∑
i≥k r

−2
i exp

(
−2
∑i−1

j=0 r
−1
j

)
r−1
k exp

(
−2
∑k−1

j=0 r
−1
j

) .
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Since both numerator and denominator are decreasing in k and go to zero as k →∞, we can apply the Stolz–Cesáro theorem
(an analog of L’Hôpital’s rule for discrete sequences):

lim
k→∞

∑
i≥k r

−2
i exp

(
−2
∑i−1

j=0 r
−1
j

)
r−1
k exp

(
−2
∑k−1

j=0 r
−1
j

) = lim
k→∞

r−2
k exp

(
−2
∑k−1

j=0 r
−1
j

)
(r−1
k − e

−2r−1
k r−1

k+1) exp
(
−2
∑k−1

j=0 r
−1
j

)
= lim
k→∞

r−2
k

(r−1
k − e

−2r−1
k r−1

k+1)
(since, for large enough k, e−2r−1

k ≤ 1− r−1
k )

≤ lim
k→∞

r−2
k

r−1
k − r

−1
k+1 + r−1

k r−1
k+1

= 0,

where the last line is due to our sufficient condition.

Now we are ready to prove Theorem S.14.
Part 1, if direction, first term: We have

r0(Σn) =
∞∑
i=1

λi = O

(
∞∑
i=1

1
i logβ(1 + i)

)
,

which is O(1) for β > 1.
Part 1, if direction, second term: By Theorem S.16, it suffices to prove that limn→∞

rn
n

=∞. This holds because

rn =

∑
i>n

1
i logβ(1+i)
1

(n+1) logβ(2+n)
= Θ(n logn),

since β > 1.
Part 1, if direction, third term: By Theorem S.17, it suffices to prove that r−2

k = o(r−1
k − r

−1
k+1), that is

lim
k→∞

r−2
k

r−1
k − r

−1
k+1

= 0

or, equivalently,

lim
k→∞

rk+1

rk(rk+1 − rk) = 0.

As argued above, when α = 1 and β > 1, rk = Θ(k log k), so it suffices to show that limk→∞(rk+1 − rk) =∞. We have

rk+1 − rk =
∑

i>k+1 λi

λk+2
−
∑

i>k
λi

λk+1

=

(
(λk+1 − λk+2)

∑
i>k+1 λi

)
− λk+1λk+2

λk+1λk+2

=

((
1

λk+2
− 1
λk+1

) ∑
i>k+1

λi

)
− 1

so it suffices to show that
lim
k→∞

(
1

λk+2
− 1
λk+1

) ∑
i>k+1

λi =∞.

Since λi is non-increasing, we have(
1

λk+2
− 1
λk+1

) ∑
i>k+1

λi ≥
(

1
λk+2

− 1
λk+1

)∫ ∞
k+1

1
x logβ x

dx

=
(

1
λk+2

− 1
λk+1

)
1

(β − 1) logβ−1(k + 1)

= (k + 2) logβ(k + 3)− (k + 1) logβ(k + 2)
(β − 1) logβ−1(k + 1)

.
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If we define f on the positive reals by f(x) = x logβ(x+ 1), then f is convex, and, since f ′(x) = βx logβ−1(x+1)
x+1 + logβ(x+ 1),

we have

(k + 2) logβ(k + 3)− (k + 1) logβ(k + 2)
(β − 1) logβ−1(k + 1)

≥
β(k+1) logβ−1(k+2)

k+2 + logβ(k + 2)
(β − 1) logβ−1(k + 1)

,

which goes to infinity for large k, completing the proof of the “if” direction of the third term of Part 1.
Part 1, only if direction, α > 1: If α > 1, then

rn =

∑
i>n

1
ia logβ(1+i)

1
na logβ(1+n)

≤ nα
∑
i>n

logβ(1 + n)
ia logβ(1 + i)

≤ nα
∑
i>n

1
ia

= nαO(n1−α),

which does not grow faster than n. Thus, by Theorem S.16, k∗(n)/n does not go to zero.
Part 1, only if direction, α < 1, or α = 1 and β ≤ 1: In this case, since, as above

r0(Σn) =
∞∑
i=1

λi,

and
∑∞

i=1
1

iα logβ(1+i) diverges in this case, r0(Σn)
n

does not go to zero.
Before starting on Part 2, let us define rk,n = rk(Σn) and Rk,n = Rk(Σn).
Part 2, if direction, first term: We have

r0,n =
∞∑
i=1

λi.n =
∞∑
i=1

1
i1+αn

≤ 1 + 1
αn

,

so r0,n
n
≤

1+ 1
αn
n

which goes to zero with n if αn = ω(1/n).
Part 2, if direction, second term: First,

rk,n = (k + 1)1+αn
∑
i>k

i−(1+αn)

≥ (k + 1)1+αn
∫ ∞
k+1

x−(1+αn)dx

= k + 1
αn

.

Thus, k∗(n) = O(αnn), so that k∗(n)
n

= O(αn) = o(1).
Part 2, if direction, third term: We bound Rk,n from below by separately bounding its numerator and denominator:∑

i>k

i−(1+αn) ≥
∫ ∞
k+1

x−(1+αn) dx

= 1
αn(k + 1)αn ,

and ∑
i>k

i−2(1+αn) ≤
∫ ∞
k

x−2(1+αn) dx

= 1
k1+2αn(2αn + 1) ,

so that
Rk,n ≥

k1+2αn(2αn + 1)
α2
n(k + 1)2αn

≥ k

α2
n
×
(

1− 1
k + 1

)2αn
. [S2]
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So now we want a lower bound on k∗(n). For that, we need an upper bound on rk,n, and

rk,n ≤ (k + 1)1+αn
∫ ∞
k

x−(1+αn)dx

= (k + 1)
αn

×
(

1 + 1
k

)αn
≤ 2k
αn

eαn/k.

This implies 2k∗(n)
αn

eαn/k
∗(n) ≥ bn. This, together with the fact that, for u > 1, ue1/u is an increasing function of u, implies

that, for large enough n, k∗(n) ≥ αnbn/3. Since αn = ω(1/n), this implies that k∗(n) = ω(1). Combining this with Eq. [S2],
for large enough n

Rk∗(n),n ≥
k∗(n)
α2
n
e−αn/k

∗(n) ≥ k∗(n)
2α2

n
≥ bn

6αn
.

Thus n/Rk∗(n),n = O(αn) = o(1).
Part 2, only if direction, αn = O(1/n): We have

r0,n =
∞∑
i=1

1
i1+αn

≥ 1
αn

,

so r0,n
n
≥ 1

αnn
, which is bounded below by a constant for large n if αn = O(1/n).

Part 2, only if direction, αn = Ω(1): Recall that, in the proof of the “if” direction of the third term, we showed that
k∗(n) ≥ αnbn/3. This implies that k∗(n)

n
= Ω(αn).

Part 3: Suppose that Σn is benign. Then because Rk(Σn) ≤ pn − k, we must have pn = ω(n). Thus, we can restrict our
attention to the sequences for which pn = ω(n) and find the necessary and sufficient conditions for that class.

Next, for any positive α and any natural number k ∈ [1, pn), we can write∫ pn

k

x−α dx ≥
pn∑

i=k+1

i−α ≥
∫ pn

k+1
x−α dx,

F (pn)− F (k) ≥
pn∑

i=k+1

i−α ≥ F (pn)− F (k + 1),

where

F (x) =
{ 1

1−αx
1−α, for α 6= 1,

ln(x), for α = 1.

As the sequence can only be benign if k∗ = o(n), we can only consider values of k that do not exceed some constant fraction
of n, e.g. n/2. Since pn = ω(n), noting that, for x > 0, the sign of 1

1−αx
1−α flips when α crosses 1, we can write, uniformly for

all k ∈ [1, n/2],
pn∑

i=k+1

i−α =


Θα

(
p1−α
n

)
, for α ∈ (0, 1),

Θα (ln(pn/k)) , for α = 1,
Θα

(
k1−α) , for α > 1.

Recall that we consider λi,n = i−α for i ≤ pn. Using the formula above, we get uniformly for all k ∈ [1, n/2]

rk(Σn) =


Θα

(
kαp1−α

n

)
, for α ∈ (0, 1),

Θα (k ln(pn/k)) , for α = 1,
Θα (k) , for α > 1.

Recall that k∗ = min{k : rk(Σn) ≥ bn}. We compute

k∗ =


Θα

(
p

1− 1
α

n n
1
α

)
, for α ∈ (0, 1),

Θα

(
n

ln(pn/n)

)
, for α = 1,

Θα (n) , for α > 1.

One can see that for α > 1, k∗ = Ωα(n), so the sequence is not benign for α > 1. On the other hand, k∗ = o(n) for α ≤ 1.
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Next, analogously to the asymptotics for rk(Σ), we have

rk(Σ2
n) =


Θα

(
k2αp1−2α

n

)
, for α ∈ (0, 0.5),

Θα (k ln(pn/k)) , for α = 0.5,
Θα (k) , for α ∈ (0.5, 1].

Since Rk = rk(Σ)2

rk(Σ2) , we can write uniformly for all k ∈ [1, n/2]

Rk =


Θα (pn) , for α ∈ (0, 0.5),
Θα

(
pn

ln(pn/k)

)
, for α = 0.5,

Θα

(
k2α−1p2−2α

n

)
, for α ∈ (0.5, 1),

Θα

(
ln(pn/k)2) , for α = 1.

Now we plug in k∗ instead of k. Recall that pn/k∗ = Θα

(
(pn/n)1/α) for α ∈ (0, 1), and pn/k∗ = Θα (pn/n ln(pn/n)) for

α = 1. We get

Rk∗ =


Θα (pn) , for α ∈ (0, 0.5),
Θα

(
n pn/n

ln(pn/n)

)
, for α = 0.5,

Θα

(
n
(
pn
n

) 1
α
−1
)
, for α ∈ (0.5, 1),

Θα

(
ln(pn/n)2) , for α = 1.

Since pn = ω(n), for any α ∈ (0, 1), Rk∗ = ω(n). For α = 1 the necessary and sufficient for Rk∗ = ω(n) is ln(pn/n) = ω(
√
n).

So far, we obtained the necessary and sufficient conditions for the last terms to go to zero. Now let’s look at the upper
bound for the first term. We write, for α ∈ (0, 1],

r0 =
pn∑
i=1

i−α =
{

Θα

(
p1−α
n

)
, for α ∈ (0, 1),

Θα (ln pn) , for α = 1.

Thus, for α < 1, r0(Σn)/n goes to zero if and only if pn = o
(
n1/(1−α)), and for α = 1, r0(Σn)/n goes to zero if and only if

ln(pn) = o(n).
Part 4: Suppose that Σn is benign. Then because Rk(Σn) ≤ pn − k, we must have pn = ω(n). Also,

tr(Σn) = Θ
(
1− e−pn/τ + pnεn

)
= Θ (1 + pnεn) ,

and so pnεn = o(n). Since Σn benign implies k∗ = o(n), and hence k∗ = o(pn), we consider k = o(pn). In this regime,∑
i>k

λi = Θ
(
e−k/τ − e−pn/τ + (pn − k)εn

)
≤ Θ

(
e−k/τ + pnεn

)
.

Thus, whenever k ≤ pn,

rk(Σn) ≤ Θ
(
e−k/τ + pnεn
e−k/τ + εn

)
.

Notice that
d

dx

x+ pnεn
x+ εn

= εn − pnεn
(x+ εn)2 < 0,

so k∗ must be large enough to make
e−k/τ + pnεn
e−k/τ + εn

= Ω(n).

Substituting k = τ ln(n/(pnεn))− a gives

rk(Σn) ≤ Θ
(
pnεn/n+ pnεn
pnεn/n+ εn

)
= Θ

(
pnεn
pnεn/n

)
= Θ (n) ,
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which shows that k∗ ≥ τ ln(n/(pnεn))−O(1). Thus, if Σn is benign, we must have k∗ = o(n), that is, εnpn = ne−o(n).
Conversely, assume pn = Ω(n) and εnpn = ne−o(n) (that is, ln(n/(pnεn)) = o(n)). Set k = τ ln(n/(pnεn))− a, for some a,

which we shall see is Θ(1). Notice that k = o(n), so pn − k = Ω(pn) and e−pn = o(e−k). Thus,∑
i>k

λi = Θ
(
e−k/τ − e−pn/τ + (pn − k)εn

)
= Θ

(
e−k/τ + pnεn

)
,∑

i>k

λ2
i = Θ

(
e−2k/τ − e−2pn + (pn − k)ε2n

)
= Θ

(
e−2k/τ + pnε

2
n

)
.

These imply

tr(Σn) = Θ(1 + pnεn),

rk(Σn) = Θ
(
e−k/τ + pnεn
e−k/τ + εn

)
= Θ

(
apnεn/n+ pnεn
apnεn/n+ εn

)
= Θ

(
pnεn

apnεn/n

)
= Θ (n/a) ,

which shows that k∗ = τ ln(n/(pnεn)) +O(1). Also, we have

Rk(Σn) = Θ

((
e−k/τ + pnεn

)2
e−2k/τ + pnε2n

)

= Θ
(

(pnεn/n+ pnεn)2

p2
nε2n/n2 + pnε2n

)
= Θ

(
p2
nε

2
n

p2
nε2n/n2 + pnε2n

)
= Θ

(
min

{
n2, pn

})
.

Combining gives

R(θ̂) = O

(
εnpn + 1

n
+ ln(n/(εnpn))

n
+ max

{
1
n
,
n

pn

})
.

Now, it is clear that pn = ω(n), εnpn = o(n), and εnpn = ne−o(n) imply that Σn is benign.
Part 5: For k < sn,

rk(Σn) = (sn − k) + εn(pn − sn).

All the eigenvalues beyond the snth are the same. Thus, for k ≥ sn, we have rk(Σn) = Rk(Σn) = pn − k.
Now, for n/Rk∗(Σn)→ 0, we need pn = ω(n), so r0(Σn)/n goes to 0 iff sn = o(n) and εnpn = o(n). Also, k∗ = sn, so k∗/n

goes to zero iff sn = o(n). Notice also that pn = ω(n) and sn = o(n) imply that n/Rk∗(Σn) also goes to zero. Thus, Σn is
benign iff

sn = o(n), εnpn = o(n), pn = ω(n).

Part 6: Notice that, for 1 < k ≤ pn,

(1− θ)2 < 1 + θ2 − 2θ cos(kπ/(pn + 1)) < (1 + θ)2,

and hence

rk ≥
(pn − k)(1− θ)2

(1 + θ)2 , Rk ≥
(pn − k)(1 + θ)4

(1− θ)4 .

Also,
(pn − 1)(1− θ)2εn

(1 + θ)2 + 1 ≤ r0 ≤
(pn − 1)(1 + θ)2εn

(1− θ)2 + 1.

Thus, r0/n→ 0 iff pnεn = o(n). For n/Rk∗(Σn)→ 0, we need pn = ω(n). Conversely, if pn = ω(n), k∗ = 1, and then k∗/n→ 0
and n/Rk∗(Σn)→ 0.
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J. Upper bound on the B term. We can control the term θ∗>Bθ∗ in Lemma 2 using a standard argument.

Lemma S.18. There is a constant c, that depends only on σx, such that for any 1 < t < n, with probability at least 1− e−t,

θ∗
>
Bθ∗ ≤ c‖θ∗‖2‖Σ‖max

{√
r0(Σ)
n

,
r0(Σ)
n

,

√
t

n

}
.

Proof. Note that (
I −X>

(
XX>

)−1
X
)
X> = X> −X>

(
XX>

)−1 (XX>) = 0. [S3]

Moreover, for any v in the orthogonal complement to the span of the columns of X>,(
I −X>

(
XX>

)−1
X
)
v = v.

Thus,
‖I −X>

(
XX>

)−1
X‖ ≤ 1. [S4]

Now we can apply Eq. [S3] to write

θ∗
>
Bθ∗ = θ∗

>
(
I −X>

(
XX>

)−1
X
)

Σ
(
I −X>

(
XX>

)−1
X
)
θ∗

= θ∗
>
(
I −X>

(
XX>

)−1
X
)(

Σ− 1
n
X>X

)(
I −X>

(
XX>

)−1
X
)
θ∗.

Combining with Eq. [S4] shows that

θ∗
>
Bθ∗ ≤

∥∥∥Σ− 1
n
X>X

∥∥∥ ‖θ∗‖2.
Thus, due to Theorem 9 in (4), there is an absolute constant c such that for any t > 1 with probability at least 1− e−t,

θ∗
>
Bθ∗ ≤ c‖θ∗‖2‖Σ‖max

{√
r(Σ)
n

,
r(Σ)
n

,

√
t

n
,
t

n

}
,

where
r(Σ) := (E‖x‖)2

‖Σ‖ ≤ tr(Σ)
‖Σ‖ = 1

λ1

∑
i

λi = r0(Σ).

K. Another lower bound. In this section, we prove the second paragraph of Theorem 1.
First, note that, without loss of generality, ||Σ||2 = 1 and ||θ∗|| = 1, since scaling these scales the excess risk by ||Σ||2

and ||θ∗||2 respectively. This implies λ1 = 1, and we may further assume without loss of generality that Σ = diag(λ1, λ2, . . .).
Define s =

∑∞
i=1 λi. We may also assume that

r0(Σ)
n log (1 + r0(Σ)) ≥ c2 [S5]

since, otherwise, the lower bound is vacuously satisfied.
Define a metric ρ over H by

ρ(u, v) =
√

(u− v)>Σ(u− v),

so that, informally, a successful learning algorithm achieves ρ(θ̂, θ) < √τ0.

Definition S.19. Define sets S1, S2, ... of indices as follows. Let S1 = {1}; let S2 = {2, ..., i2}, for the least i2 such that∑i2
i=2 λi ≥ 1. Continue the same way as long as possible; for all j > 2, let Sj = {ij−1, ..., ij}, where ij is the least index such

that
∑ij

i=ij−1
λi ≥ 1.

Lemma S.20. Definition S.19 produces Ω(n logn) sets.

Proof. For all j,
∑

i∈Sj
λi < 2. Thus, for all k,

∑
i≤ik

λi =
∑

j≤k

∑
i∈Sj

λi < 2k. Assume for contradiction that, for
k < c2n lnn

4 , after Sk, it is not possible to add any more sets. Then
∑

i≤ik
λi <

c2n lnn
2 , and, since no more sets can be added,∑∞

i=1 λi < 1 + c2n lnn
2 . We claim that, for large enough n, this contradicts the assumption that

∑∞
i=1

λi

ln
(

1+
∑∞

i=1
λi

) ≥ c2n. To see
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why, consider the function φ : R+ → R+ defined by φ(s) = s
ln(1+s) . The function φ is increasing for s ≥ 1, so it suffices to show

that φ
(
1 + c2n lnn

2

)
< c2n, and

φ
(

1 + c2n lnn
2

)
=

1 + c2n lnn
2

ln
(
2 + c2n lnn

2

)
=
(
c2
2 + o(1)

)
n,

yielding the contradiction and completing the proof.

Definition S.21. If the number of sets produced by the process of Definition S.19 is finite, let d be this finite number. Otherwise,
let d = dn lnne.

Now, informally, we, in our role as an adversary, commit to assigning all covariates in Sj the same weight. The following
definition formalizes this idea.

Definition S.22. Define a mapping φ from Rd to H as follows. For w ∈ Rd, φ(w) = θ where, for all j in [d], for all i in Sj,
θi = wj. For all i > id, θi = 0.

We would like to show that applying φ to an L2 packing yields a ρ-packing, which is done in the following lemma.

Lemma S.23. For all u, v ∈ Rn, ρ(φ(u), φ(v)) ≥ ||u− v||.

Proof.

ρ(φ(u), φ(v))2 =
∑
i

λi(φ(u)i − φ(v)i)2

=
∑
j

∑
i∈Sj

λi

 (uj − vj)2

≥
∑
j

(uj − vj)2.

Let A be the least-norm interpolation algorithm. We will bound the accuracy of A by bounding its performance in terms
of an algorithm C built using A as a subroutine, as was done in a related context in (10). The definition of Algorithm C
is illustrated in Figure S1, which is reproduced from (10). The definition uses the function Qα that rounds its input to the

Fig. S1. A diagram illustrating the definition of Algorithm C.

nearest multiple of α. Algorithm C applies algorithm A to training data whose response variables have been modified. For
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each example (x, y), and simulated artificial noise ε distributed as N(0, 1), and artificial noise ζ distributed uniformly on
(−α/2, α/2), Algorithm C gives (x, y +Qα(ε) + ζ) to A. The following lemma is similar to Lemma 5 of (10). One important
difference is that we show that Algorithm C approximates the linear function parameterized by θ∗, not its discretization.

Lemma S.24. If the linear interpolant algorithm A has error τ from n examples drawn from N(0,Σ) with independent N(0, 1)
noise with probability 1− δ, and

α ≤ min
{
δ

2n, 2τ
}

then, in the absence of noise, Algorithm C, given n examples of the form (x,Qα(θ>x)), with probability 1 − 2δ, achieves
ρ(θ̂, θ∗)2 ≤ τ .

The proof of Lemma S.24 will be deferred until we have proved some more lemmas.
Recall the definition of total variation distance, dTV (P,Q) = supE |P (E)−Q(E)|. The following lemma is implicit in the

proof of Lemma 6 of (10).

Lemma S.25. Let η, ν be random variables that are distributed according to N(0, 1) and let ζ be uniform over [−α/2, α/2].

(a) For any y ∈ R, if P1 is the distribution of y + η and P2 is the distribution of Qα(y + η) + ζ, we have dTV (P1, P2) ≤ α.

(b) For any y ∈ R, if P3 is the distribution of Qα(y + η) and P4 is the distribution of Qα(y) +Qα(η), dTV (P3, P4) ≤ α.

We will use the following, which is implicit in the proof of Lemma 8 of (11).

Lemma S.26. If P1, ..., Pn, Q1, ..., Qn are probability distributions over a domain U , and χ is a [0, 1]-valued random variable
defined on Un then ∣∣∣E∏

t
Pt

(χ)− E∏
t
Qt

(χ)
∣∣∣ ≤ n∑

t=1

dTV (Pt, Qt).

Now, we are ready to prove Lemma S.24. The proof closely follows the proof of Lemma 5 in (10).
Proof (of Lemma S.24). Let A(X, ε, θ∗) be the output θ̂ of the least-norm interpolant when the covariates are X, the noise is

ε, and the target is θ∗. Let A(X,y) be the output θ̂ of the least-norm interpolant when the covariates are X, and the response
variables are y, and let sam(X, ε, θ∗) = (X,Xθ∗ + ε) be the input arising from covariates X, regressor θ∗ and noise ε.

By assumption
N(0,Σ)n ×N(0, 1)n{(X, ε) : ρ(A(sam(X, ε, θ∗)), θ∗)2 ≥ τ} < δ.

Let ζt be a random variable with distribution Uα, where Uα is the uniform distribution over (−α/2, α/2). Let B be the
randomized algorithm that adds noise ζt to each yt value it receives, passes the result to Algorithm A, and returns A’s output.

Fix X, and define

E = {ε ∈ Rn : ρ(A(sam(X, ε, θ∗)), θ∗)2 ≥ τ}

E1 = {y ∈ Rn : ρ(A(X,y), θ∗)2 ≥ τ}.

We have

N(0, 1)n(E) =

(
n∏
t=1

P1|xt

)
(E1),

where P1|xt is the distribution of (θ∗)>xt + εt.
Define P2|xt as the distribution of Qα((θ∗)>xt + εt) + ζt. From Lemma S.25, dTV (P1|xt , P2|xt) ≤ α. Applying Lemma S.26

with χ as the indicator function for E1, ∣∣∣∣∣
(∏

t

P2|xt

)
(E1)−

(∏
t

P1|xt

)
(E1)

∣∣∣∣∣ ≤ αn.
Since α ≤ δ

2n , this implies (∏
t

P2|xt

)
(E1) ≤

(∏
t

P1|xt

)
(E1) + δ/2 = N(0, 1)n(E) + δ/2.

Let P3|xt be the distribution of Qα((θ∗)>xt + εt), and let

E3 = {(y, ζ) ∈ Rn × Rn : ρ(A(X,y + ζ), θ∗)2 > τ}

so that (∏
t

P2|xt

)
(E1) =

(∏
t

(P3|xt × U
n
α )

)
(E3).
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Let P4|xt be the distribution of Qα((θ∗)>xt) +Qα(εt). Applying Lemma S.26, we get∣∣∣∣∣
(∏

t

(P3|xt × U
n
α )

)
(E3)−

(∏
t

(P4|xt × U
n
α )

)
(E3)

∣∣∣∣∣ ≤
m∑
t=1

dTV (P3|xt , P4|xt).

From Lemma S.25, dTV (P3|xt , P4|xt) ≤ α, so(∏
t

(P4|xt × U
n
α )

)
(E3) ≤

(∏
t

(P3|xt × U
n
α )

)
(E3) + δ/2

=

(∏
t

P2|xt

)
(E1) + δ/2

≤ N(0, 1)n(E) + δ.

Averaging over the random choice of X, the probability, for (X, ζ, ε) distributed as N(0,Σ)n × Unα × N(0, 1)n, that
ρ(A(X,Qα(Xθ∗) +Qα(ε) + ζ)), θ∗)2 > τ , is at most

(N(0,Σ)n ×N(0, 1)n){(X, ε) : ρ(A(sam(X, ε, θ∗), θ∗)2 > τ}+ δ ≤ 2δ.

But A(X,Qα(Xθ∗) +Qα(ε) + ζ) is the output of the randomized algorithm C, so this completes the proof.
So, informally, we have shown that if the least norm interpolant can learn unit length weight vectors with noise and N(0,Σ)

data, then there is an algorithm C than can learn from quantized data without noise. The next step is to lower bound the
error of C.

Recall that we have fixed an n, that s def=
∑∞

i=1 λi ≥ cn, and that Σ = diag(λ1, λ2, ...).
We will use the following, which is an immediate consequence of Corollary S.6.

Lemma S.27. For each row xt of X, and each q > 1,

Pr(||xt|| > q
√
s) ≤ exp(−q2/c).

The proof of the following lemma borrows heavily from (12).
Lemma S.28. If 1/α = O(n), there is a constant τ such that, for any regression algorithm C, for all large enough n, if C is
given n examples of the form (X,Qα(Xθ∗)), if the rows of X are n independent draws from N(0,Σ), with probability at least
1/2, its output θ̂ satisfies ρ(θ̂, θ∗)2 > τ .

Proof. For τ > 0 to be chosen later, assume for contradiction that, with probability 1/2, ρ(θ̂, θ∗)2 ≤ τ . For an absolute constant
c3, let G be a set of (1/τ)c3d members of the unit ball in H that are pairwise separated by 3

√
τ w.r.t. ρ so that, for distinct

members g, h of G, ρ(g, h)2 > 9τ .
For each X ∈ Rn×∞, and each θ ∈ H, define

φ(X, θ) =
{

1 if ρ(C(X,Qα(Xθ)), θ)2 ≤ τ
0 otherwise

and define

S = EX

[∑
θ∈G

φ(X, θ)

]
.

Our assumption about the learning ability of C implies that

S ≥ |G|/2 = (1/τ)c3d/2. [S6]

For any g, h ∈ G for which Qα(Xg) = Qα(Xh), since ρ(g, h) > 3
√
τ , it cannot be the case that both φ(X, g) and φ(X,h) are

both 1. Thus, recalling that x1, ..., xn are the rows of X, and that all elements of G have length at most 1, we have

S ≤ EX(|{Qα(Xg) : g ∈ G}|)

= EX(|{Qα(Xg) : g ∈ G}|1maxt ||xt||<
√
s) +

∞∑
i=1

EX(|{Qα(Xg) : g ∈ G}|1bmaxt ||xt||/sc=i)

≤
(
c4
√
s

α

)n
+
∞∑
i=1

(i
√
s/α)n × Pr(max

t
||xt|| ≥ i

√
s)

≤
(
c4
√
s

α

)n
+
∞∑
i=1

(i
√
s/α)n × ne−i

2/c5 (by Lemma S.27)

≤ c6n
(
c4
√
s

α

)n
.
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Since 1/α = O(n)
|{Qα(Xg) : g ∈ G}| ≤ exp(O(n log(ns))) = exp(O(n log(nd)))

since d = Θ(s). Since d = Ω(n logn), for large enough n and small enough τ , this contradicts Eq. [S6], completing the proof.

Now we are ready to put everything together to prove the second paragraph of Theorem 1. By Lemma S.24, it suffices to
prove that, for a small enough constant τ0, if 1/α = O(n), with probability 1/2, Algorithm C, given examples (x,Qα(θ>x)),
with probability 1/2, fails to achieves ρ(θ̂, θ∗)2 ≤ τ0. By Lemma S.28, this is the case, completing the proof.
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